Telegram Group & Telegram Channel
🟡 scikit-learn, UMAP и HDBSCAN теперь работают на GPU — без единой строчки изменений в коде

Команда cuML (NVIDIA) представила новый режим ускорения, который позволяет запускать код с scikit-learn, umap-learn и hdbscan на GPU без изменений. Просто импортируйте cuml.accel, и всё — можно работать с Jupyter, скриптами или Colab.

Это тот же «zero-code-change» подход, что и с cudf.pandas: привычные API, ускорение под капотом.

✔️ Сейчас это бета-версия: основное работает, ускорение впечатляющее, мелкие шероховатости — в процессе доработки.

✔️ Как это работает:
— Совместимые модели подменяются на GPU-эквиваленты автоматически
— Если что-то не поддерживается — плавный откат на CPU
— Включён CUDA Unified Memory: можно не думать о размере данных (если не очень большие)

Пример:
# train_rfc.py
#%load_ext cuml.accel # Uncomment this if you're running in a Jupyter notebook
from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier

# Generate a large dataset
X, y = make_classification(n_samples=500000, n_features=100, random_state=0)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)

# Set n_jobs=-1 to take full advantage of CPU parallelism in native scikit-learn.
# This parameter is ignored when running with cuml.accel since the code already
# runs in parallel on the GPU!
rf = RandomForestClassifier(n_estimators=100, random_state=0, n_jobs=-1)
rf.fit(X_train, y_train)


Запуск:
📍 python train.py — на CPU
📍 python -m cuml.accel train.py — на GPU
📍 В Jupyter: %load_ext cuml.accel

Пример ускорения:
📍 Random Forest — ×25
📍 Linear Regression — ×52
📍 t-SNE — ×50
📍 UMAP — ×60
📍 HDBSCAN — ×175

✔️ Чем больше датасет — тем выше ускорение. Но не забывайте: при нехватке GPU-памяти может быть замедление из-за подкачки.

🔗 Документация: https://clc.to/4VVaKg

Библиотека дата-сайентиста #свежак
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/dsproglib/6378
Create:
Last Update:

🟡 scikit-learn, UMAP и HDBSCAN теперь работают на GPU — без единой строчки изменений в коде

Команда cuML (NVIDIA) представила новый режим ускорения, который позволяет запускать код с scikit-learn, umap-learn и hdbscan на GPU без изменений. Просто импортируйте cuml.accel, и всё — можно работать с Jupyter, скриптами или Colab.

Это тот же «zero-code-change» подход, что и с cudf.pandas: привычные API, ускорение под капотом.

✔️ Сейчас это бета-версия: основное работает, ускорение впечатляющее, мелкие шероховатости — в процессе доработки.

✔️ Как это работает:
— Совместимые модели подменяются на GPU-эквиваленты автоматически
— Если что-то не поддерживается — плавный откат на CPU
— Включён CUDA Unified Memory: можно не думать о размере данных (если не очень большие)

Пример:

# train_rfc.py
#%load_ext cuml.accel # Uncomment this if you're running in a Jupyter notebook
from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier

# Generate a large dataset
X, y = make_classification(n_samples=500000, n_features=100, random_state=0)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)

# Set n_jobs=-1 to take full advantage of CPU parallelism in native scikit-learn.
# This parameter is ignored when running with cuml.accel since the code already
# runs in parallel on the GPU!
rf = RandomForestClassifier(n_estimators=100, random_state=0, n_jobs=-1)
rf.fit(X_train, y_train)


Запуск:
📍 python train.py — на CPU
📍 python -m cuml.accel train.py — на GPU
📍 В Jupyter: %load_ext cuml.accel

Пример ускорения:
📍 Random Forest — ×25
📍 Linear Regression — ×52
📍 t-SNE — ×50
📍 UMAP — ×60
📍 HDBSCAN — ×175

✔️ Чем больше датасет — тем выше ускорение. Но не забывайте: при нехватке GPU-памяти может быть замедление из-за подкачки.

🔗 Документация: https://clc.to/4VVaKg

Библиотека дата-сайентиста #свежак

BY Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение




Share with your friend now:
tg-me.com/dsproglib/6378

View MORE
Open in Telegram


Библиотека data scientist’а | Data Science Machine learning анализ данных машинное обучение Telegram | DID YOU KNOW?

Date: |

NEWS: Telegram supports Facetime video calls NOW!

Secure video calling is in high demand. As an alternative to Zoom, many people are using end-to-end encrypted apps such as WhatsApp, FaceTime or Signal to speak to friends and family face-to-face since coronavirus lockdowns started to take place across the world. There’s another option—secure communications app Telegram just added video calling to its feature set, available on both iOS and Android. The new feature is also super secure—like Signal and WhatsApp and unlike Zoom (yet), video calls will be end-to-end encrypted.

How Does Telegram Make Money?

Telegram is a free app and runs on donations. According to a blog on the telegram: We believe in fast and secure messaging that is also 100% free. Pavel Durov, who shares our vision, supplied Telegram with a generous donation, so we have quite enough money for the time being. If Telegram runs out, we will introduce non-essential paid options to support the infrastructure and finance developer salaries. But making profits will never be an end-goal for Telegram.

Библиотека data scientist’а | Data Science Machine learning анализ данных машинное обучение from ar


Telegram Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение
FROM USA